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The adhesion forces which link two solids together are of the same nature as those 
which insure cohesion of solids (Van der Waals, ionic, covalent or metallic), and 
their thermodynamic transcription is the Dupre energy of adhesion w = y ,  + yz - 
y,*, where y2 is the surface energy and ylZ are interfacial energy. Its maximum value 
is about 2J/mZ for strong binding. However, the force to separate two solids in 
contact (pull out force or adherence force) depends on a number of parameters 
including the shape of the solids in contact, their rheological properties, the 
withdrawal velocity, and the stiffness of the measuring apparatus (soft or hard 
machines). Adherence is thus characterized by a coupling between mechanics and 
surface effects and can be studied by fracture mechanics, a field where such a 
coupling appeared for the first time (Griffith, 1920). 

KEY WORDS Adherence; adhesion; cracking; elastic solids; viscoelastic solids; 
fracture mechanics. 

ADHERENCE OF ELASTIC SOLIDS 

For two solids in contact over an area A, the edge of the contact 
can be seen as a crack tip, advancing when the area decreases and 
receding when the area increases. The energies involved are simply 
elastic energy U,, potential energy Up and total surface energy 
Us = -wA. Thermodynamics tells us that the crack is in equilibrium 
when the thermodynamic potential (Gibbs free energy at fixed load 

?Presented at the Tenth Annual Meeting of The Adhesion Society, Inc., 
Williamsburg, Virginia, U.S.A., February 22-27, 1987. 
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62 D. MAUGIS 

P, Helmholtz free energy at fixed grips) is extremum, i.e. G = w 
(Griffith criterion) where G is the strain energy release rate. The 
equilibrium is stable, unstable or neutral according to the sign of the 
second derivative of the thermodynamic potential, i .e. (dG/dA) ,  at 
fixed load, or (aG/dA),  at fixed grips, and thus depends on the 
shape of the solids and on the stiffness of the loading system. For 
peeling or double cantilever beam (DCB) with applied momentum, 
equilibrium is neutral, for a flat punch on a plane or DCB with dead 
load equilibrium is unstable, DCB with a wedge inserted in it is 
stable, for a sphere or a cone on a plane it is stable over a range of 
loads or displacements and becomes unstable at a critical load or 
displacement. The adherence force is the load corresponding to 
neutral or unstable equilibrium (at which the crack propagates until 
complete separation). For a sphere on a plane, for which 

where a is the radius of contact, and K ,  an elastic constant, the 
adherence force is P = - (3/2)nwR at fixed load and - (5/6)nwR at 
fixed grips (JKR theory, Ref. 1). The adherence force is not always 
proportional to w, but can vary as wl" for flat punch or DCB, or as 
w 2  for cones. 

In the Griffith description, the crack tip has an elliptical shape 
which leads to singularities at the crack tip, the intensity of which is 
described by the stress intensity factor K I .  In fact, as pointed out by 
Barenblatt,' such infinite stresses are physically unrealistic. Instead 
of appearing abruptly at the crack tip, the adhesion or cohesion 
forces increases progressively, reaching the theoretical strength 0 t h  

at the crack tip. They deform the crack as would do any stress 
system applied to the crack lips, and the crack has a short acute tip 
(the Barenblatt tip) with no singular stress (stress intensity factors 
due to external load and to cohesion forces cancel one another). It 
is this theoretical stress 0 t h  which moves with the crack and breaks 
the bonds one by one as a tip fastener does. It is also these adhesion 
or cohesion forces that provoke crack healing when external loading 
is insufficient ( G < w ) .  In fact the adherence force between two 
solids, in contact over an area A, is essentially due to the adhesion 
forces acting in the Barenblatt tip. For example, in n/2 peeling 
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ADHERENCE OF ELASTOMERS 63 

adherence is independent of the contact area and a hung load P is 
sustained only by the forces in the Barenblatt tip. For a sphere on a 
plane, the pull-out force is almost totally dependent on the value of 
w at the edge of the contact. This shows that the characterization of 
an adhesive joint by the mean stress at rupture is nonsense; fracture 
mechanics concepts must be used. 

Since w is the integral of adhesion forces in the Barenblatt tip, 
the Griffith theory (G = w )  gives a correct result as long as the 
Barenblatt tip is small compared to the crack length or to the 
contact radius. For adherence of soft tiny spheres, the JKR theory 
(G = w )  leads to mean stress well above uth, and it not valid. The 
profile of the deformed sphere becomes smooth and the adherence 
is P = -2nwR (DMT theory, Ref. 3). A simplified version of the 
Barenblatt model is the Dugdale model where the adhesion or 
cohesion force is assumed to have a constant value uo over a length 
d at the crack tip. In this case, G, or more precisely the integral J, 
becomes simply uo6, where 6, is the crack opening displacement at 
the limit of the cohesion zone. (A good example is liquid bridges 
where a, is the Laplace pressure y / r  ( r  is the radius of the 
meniscus), and 6, = 2r cos 8 the crack opening displacement, hence 
J =  G = 2 y  cos 8. Evaluating G from the variation of potential 
energy at constant volume of the liquid bridge gives the force of 
adhe ren~e .~  

ADHERENCE OF VISCOELASTIC SOLIDS 

Elements of volume near the trajectory of a moving crack undergo 
a cycle of stress when the crack tip comes on and then comes off, 
whose characteristic time is of the order of d l v  (where d is the 
length of the cohesion zone and v the crack velocity) and whose 
magnitude is proportional to uth and hence to w. In a dissipative 
material energy is lost during such a cycle, and the crack instead of 
continuously accelerating until the Rayleigh velocity, takes a limit 
velocity u, which is a function of the generalized force G - w that 
moves the crack. In a viscoelastic solid the drag force on the crack 
will be proportional to w and a function of the loss modulus E ,  a 
frequency dependent quantity, so that in the absence of inertial 
effects, one can write (Andrews and Kinloch,’ Maugis and 
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64 D. MAUGIS 

Barquid)  

or 

(the factor uT holds for temperature-velocity equivalence) which 
generalizes, for any geometry, the equation given by Gent and 
Schultz7 for peeling. Inertial effects can be accounted for by writing 

where U, is the kinetic energy of the system. Eq. (1) holds only for 
viscous drag which cancels with the crack velocity. A static friction 
term has certainly to be added for materials such as metals, where a 
finite stress must be applied to dislocations before they move and 
dissipate energy. Eq. (1) was quite well verified in all its conse- 
quences for adherence of glass on elastomers when only Van der 
Waals forces act, with crack propagation for G >  w, and crack 
healing for G < w.~,’ For polyurethane the variation of q ( v )  as vo.6 
at low velocity was correlated with the variation of E” as wo,6 at low 
frequency. 

At high frequencies the loss modulus generally decreases, and 
the loss function q(v )  decreases above a critical velocity v, 
corresponding to a critical value G,. As a negative resistance branch 
cannot be observed, the crack velocity jumps, sometimes over 
several decades, on a second positive branch, giving catastrophic 
failure. In the presence of an active medium reducing w, i.e. the 
forces in the Barenblatt tip, the G ( v )  curve is shifted as long as the 
active medium can follow the crack velocity. If it can follow it until 
the velocity 2rc, a loading that would have given subcritical crack 
growth, gives a catastrophic failure. This is the essence of Rehb- 
inder embrittlement effects.’ If, for specimen with stable geometry 
factor, i.e. ( a G / d A )  > 0, as peeling or double torsion, one tries to 
impose a mean velocity V in the negative resistance branch dqldv < 
0, stick-slip motion is observed. The classical picture of a relaxation 
oscillation cycle between G,, the second positive branch, Gmi,, and 
the first positive branch, is valid only in absence of inertial effects. 
For peeling of an adhesive tape, Eq. (2), when variation of peel 
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ADHERENCE OF ELASTOMERS 65 

angle is neglected, leads to a Lienard differential equation which 
gives limit cycles in the phase place G(v) ,  quite distinct from the 
q ( v )  curve, with Hopf bifurcation at G, and Gmin.10911 Three first 
order differential equations appear with peel angle variation, that 
can explain chaotic motion in some ranges of the parameters. 

OTHER LOSSES 

Besides the viscoelastic losses wq(a , )  due to the stresses moving 
with the crack, other losses can act and drag the crack. For 
instance, the presence of a liquid can reduce the surface energy and 
shift the G ( v )  curve, but also gives rise to viscous drag larger than 
viscoelastic ones above a critical velocity, until cavitation occurs, as 
observed by Carre and Schultz” for peeling, and Michalske and 
Fre~het te’~ for rupture of glasses in water. 

When weak binding (e.g. Van der Waals) occurs between a solid 
and a polymer, the threshold value Go for vanishing crack speed is 
the thermodynamic work of adhesion w. However, for strong 
interfacial bonds, values up to 100 J/m2 for Go are easily reached, 
which are of the same order of magnitude as the value G,* obtained 
for bulk polymers (e.g., by tearing). In this case, it is probable that 
molecular chains strongly held at the interface are drawn from the 
polymer as in crazing, and one can tentatively add to wq(a,v) a 
friction term Y ~ L  where Y is the density of strong chemical bonds at 
the interface, L the length of polymer chains and f their friction 
coefficient, as proposed by de Gennesf4 for refracture of polymers 
after healing. Such an equation could account for the results of 
Ahagon and Gent” and Chang and G e n P  on the proportionality of 
Go to the concentration of interfacial bonds and on the influence of 
crosslinking. The maximum value of Y is of the same order of 
magnitude as the number of chains broken by a crack in a bulk 
polymer and varies as M-I”. As L varies with the molecular weight 
M ,  the maximum value of Go is the G,* of the bulk polymer and 
varies as as observed by Gent and Tobias.” The problem of 
adherence in the presence of strong bonds is thus quite similar to 
that of fracture of bulk polymers where chains or fibrils are 
extracted and broken if too long. In the latter case G becomes 
independent of the molecular weight as discussed recently by 
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66 D. MAUGIS 

Prentice." As the stress in the craze zone is nearly constant, this 
zone is a perfect example of a Dugdale zone at a crack tiplg. 
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